Tìm hiểu 7 Dạng Vô Định Của Giới Hạn Dãy Số, Giới Hạn Của Hàm Số Dạng Vô Định

Tính \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 0\), trong đó \(f\left( x \right),g\left( x \right)\) là các đa thức hoặc căn thức.

Bạn đang xem: 7 dạng vô định của giới hạn dãy số

Phương pháp:

– Bước 1: Phân tích tử và mẫu thành tích các nhân tử.

– Bước 2: Chia cả tử và mẫu cho nhân tử chung của tử và mẫu.

– Bước 3: Tính giới hạn theo cách thông thường.

Nếu \(f\left( x \right)\) và \(g\left( x \right)\) có chứa căn thức thì có thể nhân cả tử và mẫu với biểu thức liên hợp trước khi phân tích chúng thành tích và giản ước.

Đặc biệt:

$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$

Ví dụ: $\mathop {\lim }\limits_{x \to 2} \dfrac{{x – 2}}{{{x^2} – 3x + 2}} = \mathop {\lim }\limits_{x \to 2} \dfrac{{x – 2}}{{\left( {x – 2} \right)\left( {x – 1} \right)}} = \mathop {\lim }\limits_{x \to 2} \dfrac{1}{{x – 1}} = \dfrac{1}{{2 – 1}} = 1$

2. Dạng vô định \(\dfrac{\infty }{\infty }\)

Bài toán: Tính \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) khi \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \pm \infty } g\left( x \right) = \pm \infty \), trong đó \(f\left( x \right),g\left( x \right)\) là các đa thức.

Phương pháp:

– Bước 1: Đặt lũy thừa bậc cao nhất của tử và mẫu ra làm nhân tử chung.

– Bước 2: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của \(x\).

Tham Khảo Thêm:  Tìm hiểu Tỉnh Trọng Điểm Nghề Cá Ở Bắc Trung Bộ Hiện Nay Là, Tỷ Trọng Điểm Về Nghề Cá Ở Bắc Trung Bộ Là

– Bước 3: Tính các giới hạn thông thường và suy ra kết quả.

Ví dụ: \(\mathop {\lim }\limits_{x \to – \infty } \dfrac{{\sqrt {{x^2} – 1} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to – \infty } \dfrac{{\sqrt {{x^2}\left( {1 – \dfrac{1}{{{x^2}}}} \right)} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to – \infty } \dfrac{{\left| x \right|\sqrt {1 – \dfrac{1}{{{x^2}}}} }}{{2x}} \) \(= \mathop {\lim }\limits_{x \to – \infty } \dfrac{{ – x\sqrt {1 – \dfrac{1}{{{x^2}}}} }}{{2x}} = – \dfrac{1}{2}\)

*

3. Dạng vô định \(0.\infty \)

Bài toán: Tính giới hạn $\mathop {\lim }\limits_{x \to {x_0}} \left$ khi $\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 0$ và $\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \pm \infty $.

Phương pháp:

– Bước 1: Biến đổi $\mathop {\lim }\limits_{x \to {x_0}} \left = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right)}}{{\dfrac{1}{{g\left( x \right)}}}}$ để đưa về dạng \(\dfrac{0}{0}\) hoặc $\mathop {\lim }\limits_{x \to {x_0}} \left = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{g\left( x \right)}}{{\dfrac{1}{{f\left( x \right)}}}}$ để đưa về dạng \(\dfrac{\infty }{\infty }\).

– Bước 2: Sử dụng các phương pháp của dạng 1 và 2 để tính tiếp giới hạn.

4. Dạng vô định \(\infty – \infty \)

Bài toán: Tính \(\mathop {\lim }\limits_{x \to {x_0}} \left\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = + \infty ,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = + \infty \) hoặc tính \(\mathop {\lim }\limits_{x \to {x_0}} \left\) khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = + \infty ,\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = – \infty \).

Xem thêm: Game Quynh Lôn – Trò Chơi Đánh Nhau

Phương pháp:

– Bước 1: Nhận hoặc chia với biểu thức liên hợp (nếu có căn thức) hoặc quy đồng để đưa về cùng một phân thức.

Tham Khảo Thêm:  Tìm hiểu Ngành Quản Lý Nhân Sự Học Quản Trị Nhân Sự Ở Đâu Tốt Nhất Tại Tphcm Và Hà Nội

Related Posts

Tìm hiểu Địa Chỉ Trung Tâm Bảo Hành Máy Tính Dell Tại Tp, Chính Sách Bảo Hành Của Dell Tại Việt Nam

Bạn Đang Tìm Các Trung Tâm Bảo Hành Sửa Chữa Laptop – Smartphone – Tablet – Storage Khác? Chọn Hãng Cần Tìm Tại Đây: STT ĐỊA CHỈ…

Tìm hiểu Các loại hợp chất vô cơ có đáp án 2023 – Hóa học lớp 9

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh bộ câu hỏi trắc nghiệm Hóa học lớp 9: Luyện tập chương 1: Các…

Tìm hiểu Bộ Đề Thi Thử Toán Học Kì 2 Lớp 12 Môn Toán, Đề Thi Học Kì 2 Lớp 12 Môn Toán

Đề trắc nghiệm kiểm tra học kì 2 Toán 12 có lời giải chi tiết từng câu. Đề thi do Thầy Nguyễn Chín Em biên soạn. Nội…

Tìm hiểu Cách Làm X – Cách Giải Các Dạng Toán Tìm X Cơ Bản Và Nâng Cao

Toán cấp 1 hướng dẫn các em cách giải một số dạng toán tìm X cơ bản và nâng cao để tìm số trừ, số bị trừ,…

Tìm hiểu Phân Tích Nội Dung Tập Thơ Từ Ấy ” Là Gì, Bài Thơ Từ ẤY (Tố HữU)

Nhằm mục đích giúp học sinh nắm vững kiến thức tác phẩm Từ ấy Ngữ văn lớp 11, bài học tác giả – tác phẩm Từ ấy…

Tìm hiểu How Does The Reaction Of Hcl And Kmno4 Proceed? Mno4 + Hcl = Mncl2 + Cl2 + H2O

I don”t get how does this reaction of hydrochloric acid and potassium permanganate proceeds: $$\ce{HCl + KMnO4 -> KCl + MnCl2 + Cl2 + H2O}$$ What I…

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *